Nordhaus–Gaddum problems for power domination

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heredity for generalized power domination

In this paper, we study the behaviour of the generalized power domination number of a graph by small changes on the graph, namely edge and vertex deletion and edge contraction. We prove optimal bounds for γP,k(G − e), γP,k(G/e) and for γP,k(G − v) in terms of γP,k(G), and give examples for which these bounds are tight. We characterize all graphs for which γP,k(G− e) = γP,k(G) + 1 for any edge e...

متن کامل

Extremal Problems for Roman Domination

A Roman dominating function of a graph G is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ v∈V (G) f(v) over such functions. Let G be a connected n-vertex graph. We prove that γR(G) ≤ 4n/5, and we characterize the graphs achieving equality. We obtain sharp upper and lower bounds for γR(...

متن کامل

Restricted power domination and fault-tolerant power domination on grids

The power domination problem is to find a minimum placement of phase measurement units (PMUs) for observing the whole electric power system, which is closely related to the classical domination problem in graphs. For a graph G = (V , E), the power domination number of G is the minimum cardinality of a set S ⊆ V such that PMUs placed on every vertex of S results in all of V being observed. A ver...

متن کامل

Parameterized power domination complexity

The optimization problem of measuring all nodes in an electrical network by placing as few measurement units (PMUs) as possible is known as Power Dominating Set. Nodes can be measured indirectly according to Kirchhoff’s law. We show that this problem can be solved in linear time for graphs of bounded treewidth and establish bounds on its parameterized complexity if the number of PMUs is the par...

متن کامل

Extremal Problems for Game Domination Number

In the domination game on a graph G, two players called Dominator and Staller alternately select vertices of G. Each vertex chosen must strictly increase the number of vertices dominated; the game ends when the chosen set becomes a dominating set of G. Dominator aims to minimize the size of the resulting dominating set, while Staller aims to maximize it. When both players play optimally, the si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2018

ISSN: 0166-218X

DOI: 10.1016/j.dam.2018.06.004